3D Bar Chart
Basic 3D bar chart using the cars dataset.
js
// SPDX-License-Identifier: Apache-2.0
// Copyright : J.P. Morgan Chase & Co.
import * as anu from '@jpmorganchase/anu';
import * as BABYLON from '@babylonjs/core';
import * as d3 from 'd3';
import data from './data/cars.json' assert {type: 'json'};
//Create and export a function that takes a Babylon engine and returns a Babylon Scene
export function barchart3D(engine){
//Create an empty Scene
const scene = new BABYLON.Scene(engine);
//Add some lighting
new BABYLON.HemisphericLight('light1', new BABYLON.Vector3(0, 10, 0), scene);
//Add a camera that rotates around the origin and adjust its properties
const camera = new BABYLON.ArcRotateCamera('Camera', 0, 0, 0, new BABYLON.Vector3(0, 0, 0), scene);
camera.position = new BABYLON.Vector3(2, 2, -3.5);
camera.wheelPrecision = 20;
camera.minZ = 0;
camera.attachControl(true);
//Get the unique values for our categorical and ordinal dimensions
const origin = [...new Set(data.map(item => item.Origin))];
const cylinders = [...new Set(data.map(item => item.Cylinders))].sort().reverse();
//Aggregate our data to the mean horsepower and MPG for the two above dimensions: origin and cylinders
let carsRollup = d3.flatRollup(data, (v) => { return {Horsepower: d3.mean(v, d => d.Horsepower),
Miles_per_Gallon: d3.mean(v, d => d.Miles_per_Gallon)}},
d => d.Origin,
d => d.Cylinders);
carsRollup = carsRollup.map(([Origin, Cylinders, Data]) => ({ Origin, Cylinders, ...Data }));
//Get extents for our linear dimensions: horsepower and MPG
const horsepowerMinMax = d3.extent([...new Set(carsRollup.map(item => item.Horsepower))]);
const MPGMinMax = d3.extent([...new Set(carsRollup.map(item => item.Miles_per_Gallon))]).reverse();
//Create the D3 functions that we will use to scale our data dimensions to desired output ranges for our visualization
let scaleX = d3.scaleBand().domain(cylinders).range([-1,1]).paddingInner(1).paddingOuter(0.5);
let scaleY = d3.scaleLinear().domain(horsepowerMinMax).range([0,2]);
let scaleZ = d3.scaleBand().domain(origin).range([-1,1]).paddingInner(1).paddingOuter(0.5);
//Do the same for color, using Anu helper functions to map values to StandardMaterial objects with colors based on the 'interpolateOrRd' palette from D3
let scaleC = d3.scaleSequential(anu.sequentialChromatic('OrRd').toStandardMaterial()).domain(MPGMinMax);
//Create a Center of Transform TransformNode that serves the parent node for all our meshes that make up our chart
let CoT = anu.create('cot', 'cot');
//Select our CoT so that we have it as a Selection object
let chart = anu.selectName('cot', scene);
//Create box meshes as children of our CoT for our rolled-up data and set their visual encodings using method chaining
let bars = chart.bind('box', { height: 1, width: 0.35, depth: 0.35 }, carsRollup)
.positionX((d) => scaleX(d.Cylinders))
.positionZ((d) => scaleZ(d.Origin))
.scalingY((d) => scaleY(d.Horsepower))
.positionY((d) => scaleY(d.Horsepower) / 2)
.material((d, i) => scaleC(d.Miles_per_Gallon)); //We set material directly as scaleC() was configured to return a StandardMaterial
//Use the Axes prefab with our three D3 scales
anu.createAxes('myAxes', { scale: { x: scaleX, y: scaleY, z: scaleZ }, parent: chart });
//Adjust the position of the chart slightly
chart.positionY(-1);
return scene;
}